
www.manaraa.com

Web Server Programming in Curry{ Extended Abstrat {Mihael Hanus?Institut f�ur Informatik, Christian-Albrehts-Universit�at KielOlshausenstr. 40, D-24098 Kiel, Germany, mh�informatik.uni-kiel.deAbstrat. In this paper we propose a new approah to implement webservies based on the Common Gateway Interfae (CGI). Sine we use themulti-paradigm delarative language Curry as an implementation language,many of the drawbaks and pitfalls of traditional CGI programming an beavoided. For instane, the syntatial details of HTML and passing valueswith CGI are hidden by a wrapper that exeutes abstrat HTML formsby translating them into onrete HTML ode. This leads to a high-levelapproah to server side web servie programming where notions like eventhandlers, state variables and ontrol of interations are available. Thanksto the use of a funtional logi language, we an struture our approahas an embedded domain spei� language where the funtional and logiprogramming features of the host language are exploited to abstrat fromdetails and frequent errors in standard CGI programming.1 MotivationIn the early days of the World Wide Web (in the following alled the web), mostof the douments were stati, i.e., stored in �les whih an be viewed in a nielyformatted layout. With the introdution of the Common Gateway Interfae (CGI),more and more douments beome dynami, i.e., they are omputed on the webserver at the time they are requested from a lient. In ombination with inputforms spei�ed in HTML douments, more omplex forms of interations beomepossible so that lients an retrieve or store spei� data via their web browsers.An advantage of CGI is that it is supported by most web servers. Thus, the useof CGI does not need any speial extensions on the server or the lient side (e.g., noservlets or ookies), whih is a requirement for our development. On the other hand,CGI o�ers only a very primitive form of interation so that the programming ofweb servies often beomes awkward. Although general sripting languages like Perlprovide libraries for deoding input form data, they do not support the programmerin the onstrution of orret output data or to ontrol a sequene of interationswith the lient. This demands for speialized languages (e.g., MAWL [8℄, DynDo[11℄) or speialized libraries in existing languages (e.g., [2, 9, 13℄). In this paper wetake the latter approah. We show how the features of an integrated funtionallogi language (see [3℄ for a survey on these kind of languages) an be exploitedto provide a exible and high-level approah to programming web servies withoutany language extensions. In partiular, our approah o�ers the following featuresfor implementing web servies:? This researh has been partially supported by the German Researh Counil (DFG)under grant Ha 2457/1-1 and by the DAAD under the PROCOPE programme.

www.manaraa.com

{ The HTML douments requested by the lients an be exibly generated de-pending on the omputed data (in ontrast to MAWL [8℄ whih uses �xedtemplates with a simple list iteration onstrut).{ The data �lled in a form by the user an be easily retrieved by an environmentmodel using logial variables as referenes.{ The di�erent ations to be taken when a user has ompleted a form are spei�edby an event handler model.{ The sequene (or iterations) of interations with the web server is desribed inone sript and not distributed over a set of sript �les. In partiular, a formis desribed together with the handler for this form whih avoids typial CGIprogramming errors (e.g., unde�ned input �elds).{ State variables whih should persist between di�erent interations are diretlysupported.{ The CGI interation (usually, by environment variables and value deoding) ishidden to the user and enapsulated in a wrapper that translates the high-levelsripts into HTML ode.Our library is ompletely implemented in Curry [4, 7℄, a modern multi-paradigmdelarative language whih integrates funtional, logi, and onurrent program-ming paradigms. Thus, we show that Curry is an appropriate language for writingweb servie sripts. On the other hand, Curry is a omplete programming lan-guage o�ering stati typing, higher-order funtions, onstraints, and features foronurrent and distributed programming, whih are useful for building omplexweb appliations.This paper is strutured as follows. The next setion provides a short overviewof the main features of Curry as relevant for this paper. Setions 3 and 4 introdueour approah for modeling basi HTML douments and interative forms. Setion 5disusses the use of our CGI programming model by various examples before weonlude in Setion 6.2 Basi Elements of CurrySine we assume familiarity with the basi struture of HTML and CGI program-ming, we review in this setion only the basi elements of Curry as neessary tounderstand the ideas presented in this paper. More details about Curry's ompu-tation model and a omplete desription of all language features an be found in[4, 7℄.Curry ombines in a seamless way features from funtional programming (nestedexpressions, lazy evaluation, higher-order funtions), logi programming (logialvariables, partial data strutures, built-in searh), and onurrent programming(onurrent evaluation of expressions with synhronization on logial variables).Curry also provides additional features in omparison to the pure paradigms(ompared to funtional programming: searh, omputing with partial informa-tion and onstraints; ompared to logi programming: more eÆient evaluationdue to the deterministi and demand-driven evaluation of funtions, more exi-ble searh strategies) and supports programming-in-the-large with spei� features(types, modules, enapsulated searh). From a syntati point of view, a Curry

www.manaraa.com

program is a funtional program1 extended by the possible inlusion of free (log-ial) variables in onditions and right-hand sides of de�ning rules. Thus, a Curryprogram onsists of the de�nition of funtions and the data types on whih thefuntions operate. Funtions are evaluated in a lazy manner. To provide the fullpower of logi programming, funtions an be alled with partially instantiatedarguments and de�ned by onditional equations with onstraints in the onditions.The behavior of funtion alls with free variables depends on the evaluation anno-tations of funtions whih an be either exible or rigid. Calls to rigid funtionsare suspended if a demanded argument, i.e., an argument whose value is nees-sary to deide the appliability of a rule, is uninstantiated (\residuation"). Calls toexible funtions are evaluated by a possibly non-deterministi instantiation of thedemanded arguments to the required values in order to apply a rule (\narrowing").Example 1. The following Curry program de�nes the data types of Boolean val-ues, polymorphi lists and trees (�rst three lines) and funtions for omputing theonatenation of lists and the last element of a list:data Bool = True | Falsedata List a = [℄ | a : List adata Tree a = Leaf a | Node a (List (Tree a))on :: [a℄ -> [a℄ -> [a℄on eval flexon [℄ ys = yson (x:xs) ys = x : on xs yslast xs | on ys [x℄ =:= xs = x where x,ys freeThe data type delarations de�ne True and False as the Boolean onstants, [℄(empty list) and : (non-empty list) as the onstrutors for polymorphi lists (a is atype variable ranging over all types and the type List a is usually written as [a℄for onformity with Haskell), and Leaf and Node as the onstrutors for trees.The (optional) type delaration (\::") of the funtion on spei�es that ontakes two lists as input and produes an output list, where all list elements areof the same (unspei�ed) type.2 Sine on is expliitly de�ned as exible3 (by\eval flex"), the equation \on ys [x℄ =:= xs" an be solved by instantiatingthe �rst argument ys to the list xs without the last argument, i.e., the only solutionto this equation satis�es that x is the last element of xs.In general, funtions are de�ned by (onditional) rules of the form\l | = e where vs free" where l has the form f t1 : : : tn with f being a funtion,t1; : : : ; tn data terms and eah variable ours only one, the ondition is a on-straint, e is a well-formed expression whih may also ontain funtion alls, lambda1 Curry has a Haskell-like syntax [10℄, i.e., (type) variables and funtion names usuallystart with lowerase letters and the names of type and data onstrutors start with anupperase letter. The appliation of f to e is denoted by juxtaposition (\f e").2 Curry uses urried funtion types where �->� denotes the type of all funtions mappingelements of type � into elements of type �.3 As a default, all funtions exept for onstraints are rigid.

www.manaraa.com

abstrations et, and vs is the list of free variables that our in and e but not inl (the ondition and the where parts an be omitted if and vs are empty, respe-tively). The where part an also ontain further loal funtion de�nitions whihare only visible in this rule. A onditional rule an be applied if its left-hand sidemathes the urrent all and its ondition is satis�able. A onstraint is any expres-sion of the built-in type Suess4. Eah Curry system provides at least equationalonstraints of the form e1 =:= e2 whih are satis�able if both sides e1 and e2 arereduible to uni�able data terms (i.e., terms without de�ned funtion symbols).However, spei� Curry systems an also support more powerful onstraint stru-tures, like arithmeti onstraints on real numbers or �nite domain onstraints forappliations in operation researh problems, as in the PAKCS implementation [6℄.The operational semantis of Curry, as preisely desribed in [4, 7℄, is a on-servative extension of lazy funtional programming (if no free variables our inthe program or the initial goal) and (onurrent) logi programming. Due to theuse of an optimal evaluation strategy [1℄, Curry an be onsidered as a generaliza-tion of onurrent onstraint programming [12℄ with a lazy (optimal) evaluationstrategy. Due to this generalization, Curry supports a lear separation between thesequential (funtional) parts of a program, whih are evaluated with an eÆientand optimal evaluation strategy, and the onurrent parts, based on the onurrentevaluation of onstraints, to oordinate onurrent program units.Monadi I/O: Sine web servie programs usually interat with their environment(e.g., retrieve or store information in �les on the server), some knowledge aboutperforming I/O in a delarative manner is required. The I/O onept of Curry isidential to the monadi I/O onept of Haskell [14℄, i.e., an interative programis onsidered to ompute a sequene of ations whih are applied to the outsideworld. Ations have type \IO �" whih means that they return a result of type� whenever they are applied to (and hange) the outside world. For instane,getChar of type IO Char is an ation whih reads a harater from the standardinput whenever it is exeuted, i.e., applied to a world. Similarly, \readFile f" isan ation whih returns the ontents of �le f in the urrent world. Ations anonly be sequentially omposed. For instane, the ation getChar an be omposedwith the ation putChar (whih has type Char -> IO () and writes a hara-ter to the terminal) by the sequential omposition operator >>= (whih has typeIO � -> (� -> IO �) -> IO �), i.e., \getChar >>= putChar" is a omposedation whih prints the next harater of the input stream on the sreen. Further-more, \return e" is the \empty" ation whih simply returns e (see [14℄ for moredetails).3 Modeling Basi HTMLIn order to avoid ertain syntatial errors (e.g., unbalaned parenthesis) duringthe generation of HTML douments by a web server, the programmer should notbe fored to generate the expliit text of HTML douments (as in CGI sriptswritten in Perl or with the Unix shell). A better approah is the introdution of anabstration layer where HTML douments are modeled as terms of a spei� data4 Suess was alled Constraint in previous versions of Curry

www.manaraa.com

type together with a wrapper funtion whih is responsible for the orret textualrepresentation of this data type. Suh an approah an be easily implemented ina language supporting algebrai data types. Similarly to the data type of trees inExample 1, we introdue the type of HTML expressions in Curry as follows:data HtmlExp = HtmlText String| HtmlStrut String [(String,String)℄ [HtmlExp℄| HtmlElem String [(String,String)℄Thus, an HTML expression is either a plain string or a struture onsisting ofa tag (e.g., B,EM,H1,H2,. . .), a list of attributes, and a list of HTML expressionsontained in this struture. The translation of suh HTML expressions into theirorresponding textual representation is straightforward: an HtmlText is representedby its argument, and a struture with tag t is enlosed in the brakets <t> and </t>(where the attributes are eventually added to the open braket). Sine there are afew HTML elements without a losing tag (like <HR> or
), we have inludedthe alternative HtmElem to represent these elements.Sine writing HTML douments in this form might be tedious, we de�ne severalfuntions as useful abbreviations (the funtion htmlQuote transforms haraterswith a speial meaning in HTML, like <, >, &, ", into their HTML quoted form):htxt s = HtmlText (htmlQuote s) -- plain stringh1 hexps = HtmlStrut "H1" [℄ hexps -- main header...bold hexps = HtmlStrut "B" [℄ hexps -- bold fontitali hexps = HtmlStrut "I" [℄ hexps -- itali font...hrule = HtmlElem "HR" [℄ -- horizontal rule...As a simple example, the following expression de�nes a \Hello World" doumentonsisting of a header and two words in itali and bold font, respetively:[h1 [htxt "Hello World"℄,itali [htxt "Hello"℄, bold [htxt "world!"℄℄Note that we do not hek the validity of the attributes for eah struture. This anbe done by de�ning HTML expressions with a reaher type struture, as shown in[13℄. The wrapper funtion to onvert these HTML expressions into valid HTMLdouments will be shown in the next setion where we disuss the modeling ofinput forms.4 Input FormsIn order to enable more sophistiated interations between lients using standardbrowsers and a web server, HTML de�nes so-alled FORM elements whih usuallyontains several input elements to be �lled out by the lient. When the lientsubmits suh a form, the data ontained in the input elements is enoded andsent (on the standard input or with the URL) to the server whih starts a CGIprogram to reat to the submission. The ativated program deodes the input data

www.manaraa.com

and performs some appliation-dependent proessing before it returns an HTMLdoument on the standard output whih is then sent bak to the lient.In priniple, the type HtmlExp is suÆient to model all kinds of HTML dou-ments inluding input elements like text �elds, hek buttons et. For instane, aninput �eld to be �lled out with a text string an be modeled asHtmlElem "INPUT" [("TYPE","TEXT"),("NAME",name),("VALUE",ont)℄where the string ontents de�nes an initial ontents of this �eld and the stringname is used to identify this �eld when the data of the �lled form is sent to theserver. This diret approah is taken in CGI libraries for sripting languages likePerl or also in the CGI library for Haskell [9℄. In this ase, the program runningon the web server is an I/O ation that deodes the input data (ontained in en-vironment variables and the standard input stream) and puts the resulting HTMLdoument on the output stream. Therefore, CGI programs an be implemented inany programming language supporting aess to the system environment. However,this basi view results in an awkward programming style when sequenes of inter-ations (i.e., HTML forms) must be modeled where state should be passed betweendi�erent interations. Therefore, we propose a higher abstration level and we willshow that the funtional and logi features of the underlying language Curry anbe exploited to provide an appropriate programming infrastruture.There are two basi ideas of our CGI programming model:1. The input �elds are not referened by strings but by elements of a spei�abstrat data type. This has the advantage that the names of referenes orre-spond to names of program variables so that the ompiler an hek inonsis-tenies in the naming of referenes.2. The program that is ativated when a form is submitted is implemented to-gether with the program generating the form. This has the advantage thatsequenes of interations an be simply implemented using the ontrol abstra-tions of the underlying language and state an be easily passed between di�erentinterations of a sequene using the referenes mentioned above.For dealing with referenes to input �elds, we use logial variables sine it is wellknown that logial variables are a useful notion to express dependenies inside datastrutures [5, 15℄. To be more preise, we introdue a data typedata CgiRef = CgiRef Stringdenoting the type of all referenes to input elements in HTML forms. This datatype is abstrat, i.e., its onstrutor CgiRef is not exported by the CGI library.This is essential sine it avoids the onstrution of wrong referenes. The only wayto introdue suh referenes are logial variables, and the global wrapper funtionis responsible to instantiate these variables with appropriate referenes (i.e., instan-tiate eah referene variable to a term of the form CgiRef n where n is a uniquename).To inlude referenes in HTML forms, we extend the de�nition of our data typefor HTML expressions by the following alternative:data HtmlExp = ... | HtmlCRef HtmlExp CgiRef

www.manaraa.com

A term \HtmlCref hexp r" denotes an HTML element hexp with a referene toit. Usually, hexp is one of the input elements de�ned for HTML, like text �elds,text areas, hek boxes et. For instane, a text �eld is de�ned by the followingabbreviation in our library:5textfield :: CgiRef -> String -> HtmlExptextfield eval flextextfield (CgiRef ref) ontents =HtmlCRef (HtmlElem "INPUT" [("TYPE","TEXT"),("NAME",ref),("VALUE",ontents)℄)(CgiRef ref)Note that ref is unbound when this funtion is applied but it will be bound to aunique name (string) by the wrapper funtion exeuting the form (see below).A omplete HTML form onsists of a title and a list of HTML expressions tobe displayed by the lient's browser, i.e., we represent HTML forms as expressionsof the following data type:data HtmlForm = Form String [HtmlExp℄Thus, we de�ne a form ontaining a single input element (a text �eld) byForm "Form" [h1 [htxt "A Simple Form"℄,htxt "Enter a string:", textfield sref ""℄In order to submit a form to the web server, HTML supports \submit" buttons (weonly disuss this submission method here although there are others). The ationsto be taken are desribed by CGI programs that deode the submitted values of theform before they perform the appropriate ations. To simplify these ations andombine them with the program generating the form, we propose an event handlingmodel for CGI programming. For this purpose, eah submit button is assoiatedwith an event handler responsible to perform the appropriate ations. An eventhandler is a funtion from a CGI environment into an I/O ation (in order toenable aess to the server environment) that returns a new form to be sent bakto the lient. A CGI environment is simply a mapping from CGI referenes intostrings. When an event handler is exeuted, it is supplied with a CGI environmentontaining the values entered by the lient into the form. Thus, event handlers havethe typetype EventHandler = (CgiRef -> String) -> IO HtmlFormTo attah an event handler to an HTML element, we �nally extend the de�nitionof our data type for HTML expressions by:data HtmlExp = ... | HtmlEvent HtmlExp EventHandlerA term \HtmlEvent hexp handler" denotes an HTML element hexp (typially asubmit button) with an assoiated event handler. Thus, submit buttons are de�nedas follows:5 Note that this funtion must be exible so that the �rst argument, whih an only bea logial variable, is instantiated by the appliation of this funtion.

www.manaraa.com

Fig. 1. A simple string reverse/dupliation formbutton :: String -> EventHandler -> HtmlExpbutton txt handler =HtmlEvent (HtmlElem "INPUT" [("TYPE","SUBMIT"),("NAME","EVENT"),("VALUE",txt)℄)handlerThe argument label is the text shown on the button and the attribute NAME islater used to identify the seleted submit button (sine several buttons an ourin one form).To see a simple but omplete example, we show the spei�ation of a form wherethe user an enter a string and hoose between two ations (reverse or dupliatethe string, see Figure 1):6revdup = return $ Form "Question"[htxt "Enter a string: ", textfield tref "",hrule,button "Reverse string" revhandler,button "Dupliate string" duphandler℄wheretref freerevhandler env = return $ Form "Answer"[h1 [htxt ("Reversed input: " ++ rev (env tref))℄℄duphandler env = return $ Form "Answer"[h1 [htxt ("Dupliated input: " ++ env tref ++ env tref)℄℄Note the simpliity of retrieving values entered into the form: sine the event han-dlers are alled with the appropriate environment ontaining these values, theyan easily aess these values by applying the environment to the appropriate CGIreferene, like (env tref). This simple struture of CGI programming is madepossible by the funtional as well as logi programming features of the underlyinglanguage Curry.6 The prede�ned right-assoiative in�x operator f $ e denotes the appliation of f to theargument e.

www.manaraa.com

Forms are exeuted by a speial wrapper funtion that performs the translationinto onrete HTML ode, deoding the entered values and invoking the right eventhandler. This wrapper funtion has the following type:rungi :: String -> IO HtmlForm -> IO ()It takes a string (the URL under whih this CGI program is aessible on theserver) and an I/O ation returning a form and returns an I/O ation whih, whenexeuted, returns the HTML ode of the form. Thus, the above form is exeutedby the following main funtionmain = rungi "revdup.gi" revdupprovided that the exeutable of this program is stored in revdup.gi.5 Server Side Web SriptingIn this following setion we will sketh that the omponents for CGI programmingintrodued so far (i.e., logial variables for CGI referenes, assoiated event handlersdepending on CGI environments) are suÆient to solve typial problems in CGIprogramming in an appropriate way, like handling sequenes of interations orholding intermediate states between interations.From the previous example it might be unlear why the event handlers as wellas the wrapper funtion assumes that the form is enapsulated in an I/O ation.Although this is unneessary for appliations where the web server is used as a\omputation server" (where the result depends only on the form inputs), in manyappliations the lients want to aess or manipulate data stored on the server. Inthese ases, the web servie program must be able to aess the server environmentwhih is easily enabled by running it in the I/O monad.As a simple example for suh kinds of appliations, we show the de�nition ofa (not reommendable) form to retrieve the ontents of an arbitrary �le stored atthe server:getfile = return $ Form "Question"[htxt "Enter loal file name:", textfield fileref "",button "Get file!" handler℄wherefileref freehandler env = readFile (env fileref) >>= \ontents ->return $ Form "Answer"[h1 [htxt ("Contents of " ++ env fileref)℄,verbatim ontents℄Here it is essential that the event handler is exeuted in the I/O monad, otherwiseit has no possibility to aess the ontents of the loal �le via the I/O ationreadFile before omputing the ontents of the returned form. In a similar way,arbitrary data an be retrieved or stored by the web server while exeuting CGIprograms.

www.manaraa.com

In the previous examples the interation between the lient and the web serveris quite simple: the lient sends a request by �lling a form whih is answered bythe server with an HTML doument ontaining the requested information. In real-isti appliations it is often the ase that the interation is not �nished by sendingbak the requested information but the lient requests further (e.g., more detailed)information based on the reeived results. Thus, one has to deal with sequenes oflonger interations between the lient and the server. Our CGI programmingmodelprovides a diret support for interation sequenes. Sine the answer provided bythe event handler is an HTML form rather than an HTML expression, this answeran also ontain further input elements and assoiated event handlers. By nestingevent handlers, it is straightforward to implement bounded sequenes of intera-tions. Furthermore, arbitrary iterations or branhes in interations sequenes anbe implemented by the orresponding ontrol onstruts of the underlying lan-guage, e.g., reursion or if-then-else. This also o�ers an elegant solution to thenasty problem of handling intermediate states between di�erent interations (notethat HTTP is a stateless protool). Sine Curry is a language with lexial soping,event handlers an be nested and one an diretly refer to input elements in pre-vious forms. Although there are many other proposals to overome the statelessnature of HTTP, it should be noted that our library is ompletely implemented inCurry and does not require any extension to web servers but uses only the standardfeatures of CGI. Sine these are supported by most web servers, our library an beused with most web servers (where a Curry system is also installed).6 ConlusionsIn this paper we have presented a new model for programming web servies basedon the standard Common Gateway Interfae. Sine this model is put on top ofthe multi-paradigm language Curry, we ould exploit funtional as well as logiprogramming tehniques to provide a high abstration level for our programmingmodel. We have used funtional abstrations for speifying HTML forms as ex-pressions of a spei� data type so that only well-formed HTML strutures an bewritten. Furthermore, higher-order funtional abstrations are used to attah eventhandlers to partiular HTML elements like buttons and to provide a straightfor-ward aess to input values via an environment model. Sine event handlers an benested, we have a diret support to de�ne sequenes (or sessions) of interationsbetween the lient and the server where states or input values of previous forms areavailable in subsequent interations. This overomes the stateless nature of HTTP.On the other hand, the logial features of Curry are used to deal with referenes toinput values in HTML forms. Sine a form an have an arbitrary number of inputvalues, we onsider them as \holes" in an HTML expression whih are �lled by theuser so that event handlers an aess these values through an environment. Usinglogial variables to refer to input values seems more appropriate than the use ofstrings as in raw HTML sine some errors (e.g., mispelled names) are deteted atompile time.Sine the programming model proposed in this paper needs no spei� exten-sion to Curry, it provides appropriate support to implement web-based interfaesto existing Curry appliations. Moreover, it an be onsidered as a domain-spei�

www.manaraa.com

language for writing CGI sripts. Thus, this demonstrates that a multi-paradigmdelarative language like Curry an also be used as a sripting language for serverside web appliations. We have shown that the funtional as well as the logi fea-tures provides a good infrastruture to design suh a domain-spei� language.The implementation of this library is freely available with our Curry developmentsystem PAKCS [6℄. All examples in this paper have been tested with this implemen-tation. Furthermore, the library is urrently used to dynamially reate parts ofthe web pages for Curry7 and to handle the submission information for the Journalof Funtional and Logi Programming8.Referenes1. S. Antoy, R. Ehahed, and M. Hanus. A Needed Narrowing Strategy. To appearin Journal of the ACM, 2000. Previous version in Pro. 21st ACM Symposium onPriniples of Programming Languages, pp. 268{279, 1994.2. D. Cabeza and M. Hermenegildo. Internet and WWW Programming using Compu-tational Logi Systems. In Workshop on Logi Programming and the Internet, 1996.See also http://www.lip.dia.fi.upm.es/misdos/pillow/pillow.html.3. M. Hanus. The Integration of Funtions into Logi Programming: From Theory toPratie. Journal of Logi Programming, Vol. 19&20, pp. 583{628, 1994.4. M. Hanus. A Uni�ed Computation Model for Funtional and Logi Programming. InPro. of the 24th ACM Symposium on Priniples of Programming Languages (Paris),pp. 80{93, 1997.5. M. Hanus. A Funtional Logi Programming Approah to Graphial User Interfaes.In International Workshop on Pratial Aspets of Delarative Languages (PADL'00),pp. 47{62. Springer LNCS 1753, 2000.6. M. Hanus, S. Antoy, J. Koj, P. Niederau, R. Sadre, and F. Steiner.PACS: The Portland Aahen Kiel Curry System. Available athttp://www.informatik.uni-kiel.de/~paks/, 2000.7. M. Hanus (ed.). Curry: An Integrated Funtional Logi Language (Vers. 0.7.1). Avail-able at http://www.informatik.uni-kiel.de/~urry, 2000.8. D.A. Ladd and J.C. Ramming. Programming the Web: An Appliation-OrientedLanguage for Hypermedia Servies. In 4th International World Wide Web Conferene,1995.9. E. Meijer. Server Side Web Sripting in Haskell. Journal of Funtional Programming,Vol. 10, No. 1, pp. 1{18, 2000.10. J. Peterson et al. Haskell: A Non-strit, Purely Funtional Language (Version 1.4).Tehnial Report, Yale University, 1997.11. A. Sandholm and M.I. Shwartzbah. A Type System for Dynami Web Douments.In Pro. of the 27th ACM Symposium on Priniples of Programming Languages, pp.290{301, 2000.12. V.A. Saraswat. Conurrent Constraint Programming. MIT Press, 1993.13. P. Thiemann. Modelling HTML in Haskell. In International Workshop on PratialAspets of Delarative Languages (PADL'00), pp. 263{277. Springer LNCS 1753, 2000.14. P. Wadler. How to Delare an Imperative. ACM Computing Surveys, Vol. 29, No. 3,pp. 240{263, 1997.15. D.H.D. Warren. Logi Programming and Compiler Writing. Software - Pratie andExperiene, Vol. 10, pp. 97{125, 1980.7 http://www.informatik.uni-kiel.de/~urry8 http://www-i2.informatik.rwth-aahen.de/~hanus/jflp.gi

