
www.manaraa.com

Web Server Programming in Curry{ Extended Abstra
t {Mi
hael Hanus?Institut f�ur Informatik, Christian-Albre
hts-Universit�at KielOlshausenstr. 40, D-24098 Kiel, Germany, mh�informatik.uni-kiel.deAbstra
t. In this paper we propose a new approa
h to implement webservi
es based on the Common Gateway Interfa
e (CGI). Sin
e we use themulti-paradigm de
larative language Curry as an implementation language,many of the drawba
ks and pitfalls of traditional CGI programming
an beavoided. For instan
e, the synta
ti
al details of HTML and passing valueswith CGI are hidden by a wrapper that exe
utes abstra
t HTML formsby translating them into
on
rete HTML
ode. This leads to a high-levelapproa
h to server side web servi
e programming where notions like eventhandlers, state variables and
ontrol of intera
tions are available. Thanksto the use of a fun
tional logi
 language, we
an stru
ture our approa
has an embedded domain spe
i�
 language where the fun
tional and logi
programming features of the host language are exploited to abstra
t fromdetails and frequent errors in standard CGI programming.1 MotivationIn the early days of the World Wide Web (in the following
alled the web), mostof the do
uments were stati
, i.e., stored in �les whi
h
an be viewed in a ni
elyformatted layout. With the introdu
tion of the Common Gateway Interfa
e (CGI),more and more do
uments be
ome dynami
, i.e., they are
omputed on the webserver at the time they are requested from a
lient. In
ombination with inputforms spe
i�ed in HTML do
uments, more
omplex forms of intera
tions be
omepossible so that
lients
an retrieve or store spe
i�
 data via their web browsers.An advantage of CGI is that it is supported by most web servers. Thus, the useof CGI does not need any spe
ial extensions on the server or the
lient side (e.g., noservlets or
ookies), whi
h is a requirement for our development. On the other hand,CGI o�ers only a very primitive form of intera
tion so that the programming ofweb servi
es often be
omes awkward. Although general s
ripting languages like Perlprovide libraries for de
oding input form data, they do not support the programmerin the
onstru
tion of
orre
t output data or to
ontrol a sequen
e of intera
tionswith the
lient. This demands for spe
ialized languages (e.g., MAWL [8℄, DynDo
[11℄) or spe
ialized libraries in existing languages (e.g., [2, 9, 13℄). In this paper wetake the latter approa
h. We show how the features of an integrated fun
tionallogi
 language (see [3℄ for a survey on these kind of languages)
an be exploitedto provide a
exible and high-level approa
h to programming web servi
es withoutany language extensions. In parti
ular, our approa
h o�ers the following featuresfor implementing web servi
es:? This resear
h has been partially supported by the German Resear
h Coun
il (DFG)under grant Ha 2457/1-1 and by the DAAD under the PROCOPE programme.

www.manaraa.com

{ The HTML do
uments requested by the
lients
an be
exibly generated de-pending on the
omputed data (in
ontrast to MAWL [8℄ whi
h uses �xedtemplates with a simple list iteration
onstru
t).{ The data �lled in a form by the user
an be easily retrieved by an environmentmodel using logi
al variables as referen
es.{ The di�erent a
tions to be taken when a user has
ompleted a form are spe
i�edby an event handler model.{ The sequen
e (or iterations) of intera
tions with the web server is des
ribed inone s
ript and not distributed over a set of s
ript �les. In parti
ular, a formis des
ribed together with the handler for this form whi
h avoids typi
al CGIprogramming errors (e.g., unde�ned input �elds).{ State variables whi
h should persist between di�erent intera
tions are dire
tlysupported.{ The CGI intera
tion (usually, by environment variables and value de
oding) ishidden to the user and en
apsulated in a wrapper that translates the high-levels
ripts into HTML
ode.Our library is
ompletely implemented in Curry [4, 7℄, a modern multi-paradigmde
larative language whi
h integrates fun
tional, logi
, and
on
urrent program-ming paradigms. Thus, we show that Curry is an appropriate language for writingweb servi
e s
ripts. On the other hand, Curry is a
omplete programming lan-guage o�ering stati
 typing, higher-order fun
tions,
onstraints, and features for
on
urrent and distributed programming, whi
h are useful for building
omplexweb appli
ations.This paper is stru
tured as follows. The next se
tion provides a short overviewof the main features of Curry as relevant for this paper. Se
tions 3 and 4 introdu
eour approa
h for modeling basi
 HTML do
uments and intera
tive forms. Se
tion 5dis
usses the use of our CGI programming model by various examples before we
on
lude in Se
tion 6.2 Basi
 Elements of CurrySin
e we assume familiarity with the basi
 stru
ture of HTML and CGI program-ming, we review in this se
tion only the basi
 elements of Curry as ne
essary tounderstand the ideas presented in this paper. More details about Curry's
ompu-tation model and a
omplete des
ription of all language features
an be found in[4, 7℄.Curry
ombines in a seamless way features from fun
tional programming (nestedexpressions, lazy evaluation, higher-order fun
tions), logi
 programming (logi
alvariables, partial data stru
tures, built-in sear
h), and
on
urrent programming(
on
urrent evaluation of expressions with syn
hronization on logi
al variables).Curry also provides additional features in
omparison to the pure paradigms(
ompared to fun
tional programming: sear
h,
omputing with partial informa-tion and
onstraints;
ompared to logi
 programming: more eÆ
ient evaluationdue to the deterministi
 and demand-driven evaluation of fun
tions, more
exi-ble sear
h strategies) and supports programming-in-the-large with spe
i�
 features(types, modules, en
apsulated sear
h). From a synta
ti
 point of view, a Curry

www.manaraa.com

program is a fun
tional program1 extended by the possible in
lusion of free (log-i
al) variables in
onditions and right-hand sides of de�ning rules. Thus, a Curryprogram
onsists of the de�nition of fun
tions and the data types on whi
h thefun
tions operate. Fun
tions are evaluated in a lazy manner. To provide the fullpower of logi
 programming, fun
tions
an be
alled with partially instantiatedarguments and de�ned by
onditional equations with
onstraints in the
onditions.The behavior of fun
tion
alls with free variables depends on the evaluation anno-tations of fun
tions whi
h
an be either
exible or rigid. Calls to rigid fun
tionsare suspended if a demanded argument, i.e., an argument whose value is ne
es-sary to de
ide the appli
ability of a rule, is uninstantiated (\residuation"). Calls to
exible fun
tions are evaluated by a possibly non-deterministi
 instantiation of thedemanded arguments to the required values in order to apply a rule (\narrowing").Example 1. The following Curry program de�nes the data types of Boolean val-ues, polymorphi
 lists and trees (�rst three lines) and fun
tions for
omputing the
on
atenation of lists and the last element of a list:data Bool = True | Falsedata List a = [℄ | a : List adata Tree a = Leaf a | Node a (List (Tree a))
on
 :: [a℄ -> [a℄ -> [a℄
on
 eval flex
on
 [℄ ys = ys
on
 (x:xs) ys = x :
on
 xs yslast xs |
on
 ys [x℄ =:= xs = x where x,ys freeThe data type de
larations de�ne True and False as the Boolean
onstants, [℄(empty list) and : (non-empty list) as the
onstru
tors for polymorphi
 lists (a is atype variable ranging over all types and the type List a is usually written as [a℄for
onformity with Haskell), and Leaf and Node as the
onstru
tors for trees.The (optional) type de
laration (\::") of the fun
tion
on
 spe
i�es that
on
takes two lists as input and produ
es an output list, where all list elements areof the same (unspe
i�ed) type.2 Sin
e
on
 is expli
itly de�ned as
exible3 (by\eval flex"), the equation \
on
 ys [x℄ =:= xs"
an be solved by instantiatingthe �rst argument ys to the list xs without the last argument, i.e., the only solutionto this equation satis�es that x is the last element of xs.In general, fun
tions are de�ned by (
onditional) rules of the form\l |
 = e where vs free" where l has the form f t1 : : : tn with f being a fun
tion,t1; : : : ; tn data terms and ea
h variable o

urs only on
e, the
ondition
 is a
on-straint, e is a well-formed expression whi
h may also
ontain fun
tion
alls, lambda1 Curry has a Haskell-like syntax [10℄, i.e., (type) variables and fun
tion names usuallystart with lower
ase letters and the names of type and data
onstru
tors start with anupper
ase letter. The appli
ation of f to e is denoted by juxtaposition (\f e").2 Curry uses
urried fun
tion types where �->� denotes the type of all fun
tions mappingelements of type � into elements of type �.3 As a default, all fun
tions ex
ept for
onstraints are rigid.

www.manaraa.com

abstra
tions et
, and vs is the list of free variables that o

ur in
 and e but not inl (the
ondition and the where parts
an be omitted if
 and vs are empty, respe
-tively). The where part
an also
ontain further lo
al fun
tion de�nitions whi
hare only visible in this rule. A
onditional rule
an be applied if its left-hand sidemat
hes the
urrent
all and its
ondition is satis�able. A
onstraint is any expres-sion of the built-in type Su

ess4. Ea
h Curry system provides at least equational
onstraints of the form e1 =:= e2 whi
h are satis�able if both sides e1 and e2 areredu
ible to uni�able data terms (i.e., terms without de�ned fun
tion symbols).However, spe
i�
 Curry systems
an also support more powerful
onstraint stru
-tures, like arithmeti

onstraints on real numbers or �nite domain
onstraints forappli
ations in operation resear
h problems, as in the PAKCS implementation [6℄.The operational semanti
s of Curry, as pre
isely des
ribed in [4, 7℄, is a
on-servative extension of lazy fun
tional programming (if no free variables o

ur inthe program or the initial goal) and (
on
urrent) logi
 programming. Due to theuse of an optimal evaluation strategy [1℄, Curry
an be
onsidered as a generaliza-tion of
on
urrent
onstraint programming [12℄ with a lazy (optimal) evaluationstrategy. Due to this generalization, Curry supports a
lear separation between thesequential (fun
tional) parts of a program, whi
h are evaluated with an eÆ
ientand optimal evaluation strategy, and the
on
urrent parts, based on the
on
urrentevaluation of
onstraints, to
oordinate
on
urrent program units.Monadi
 I/O: Sin
e web servi
e programs usually intera
t with their environment(e.g., retrieve or store information in �les on the server), some knowledge aboutperforming I/O in a de
larative manner is required. The I/O
on
ept of Curry isidenti
al to the monadi
 I/O
on
ept of Haskell [14℄, i.e., an intera
tive programis
onsidered to
ompute a sequen
e of a
tions whi
h are applied to the outsideworld. A
tions have type \IO �" whi
h means that they return a result of type� whenever they are applied to (and
hange) the outside world. For instan
e,getChar of type IO Char is an a
tion whi
h reads a
hara
ter from the standardinput whenever it is exe
uted, i.e., applied to a world. Similarly, \readFile f" isan a
tion whi
h returns the
ontents of �le f in the
urrent world. A
tions
anonly be sequentially
omposed. For instan
e, the a
tion getChar
an be
omposedwith the a
tion putChar (whi
h has type Char -> IO () and writes a
hara
-ter to the terminal) by the sequential
omposition operator >>= (whi
h has typeIO � -> (� -> IO �) -> IO �), i.e., \getChar >>= putChar" is a
omposeda
tion whi
h prints the next
hara
ter of the input stream on the s
reen. Further-more, \return e" is the \empty" a
tion whi
h simply returns e (see [14℄ for moredetails).3 Modeling Basi
 HTMLIn order to avoid
ertain synta
ti
al errors (e.g., unbalan
ed parenthesis) duringthe generation of HTML do
uments by a web server, the programmer should notbe for
ed to generate the expli
it text of HTML do
uments (as in CGI s
riptswritten in Perl or with the Unix shell). A better approa
h is the introdu
tion of anabstra
tion layer where HTML do
uments are modeled as terms of a spe
i�
 data4 Su

ess was
alled Constraint in previous versions of Curry

www.manaraa.com

type together with a wrapper fun
tion whi
h is responsible for the
orre
t textualrepresentation of this data type. Su
h an approa
h
an be easily implemented ina language supporting algebrai
 data types. Similarly to the data type of trees inExample 1, we introdu
e the type of HTML expressions in Curry as follows:data HtmlExp = HtmlText String| HtmlStru
t String [(String,String)℄ [HtmlExp℄| HtmlElem String [(String,String)℄Thus, an HTML expression is either a plain string or a stru
ture
onsisting ofa tag (e.g., B,EM,H1,H2,. . .), a list of attributes, and a list of HTML expressions
ontained in this stru
ture. The translation of su
h HTML expressions into their
orresponding textual representation is straightforward: an HtmlText is representedby its argument, and a stru
ture with tag t is en
losed in the bra
kets <t> and </t>(where the attributes are eventually added to the open bra
ket). Sin
e there are afew HTML elements without a
losing tag (like <HR> or
), we have in
ludedthe alternative HtmElem to represent these elements.Sin
e writing HTML do
uments in this form might be tedious, we de�ne severalfun
tions as useful abbreviations (the fun
tion htmlQuote transforms
hara
terswith a spe
ial meaning in HTML, like <, >, &, ", into their HTML quoted form):htxt s = HtmlText (htmlQuote s) -- plain stringh1 hexps = HtmlStru
t "H1" [℄ hexps -- main header...bold hexps = HtmlStru
t "B" [℄ hexps -- bold fontitali
 hexps = HtmlStru
t "I" [℄ hexps -- itali
 font...hrule = HtmlElem "HR" [℄ -- horizontal rule...As a simple example, the following expression de�nes a \Hello World" do
ument
onsisting of a header and two words in itali
 and bold font, respe
tively:[h1 [htxt "Hello World"℄,itali
 [htxt "Hello"℄, bold [htxt "world!"℄℄Note that we do not
he
k the validity of the attributes for ea
h stru
ture. This
anbe done by de�ning HTML expressions with a rea
her type stru
ture, as shown in[13℄. The wrapper fun
tion to
onvert these HTML expressions into valid HTMLdo
uments will be shown in the next se
tion where we dis
uss the modeling ofinput forms.4 Input FormsIn order to enable more sophisti
ated intera
tions between
lients using standardbrowsers and a web server, HTML de�nes so-
alled FORM elements whi
h usually
ontains several input elements to be �lled out by the
lient. When the
lientsubmits su
h a form, the data
ontained in the input elements is en
oded andsent (on the standard input or with the URL) to the server whi
h starts a CGIprogram to rea
t to the submission. The a
tivated program de
odes the input data

www.manaraa.com

and performs some appli
ation-dependent pro
essing before it returns an HTMLdo
ument on the standard output whi
h is then sent ba
k to the
lient.In prin
iple, the type HtmlExp is suÆ
ient to model all kinds of HTML do
u-ments in
luding input elements like text �elds,
he
k buttons et
. For instan
e, aninput �eld to be �lled out with a text string
an be modeled asHtmlElem "INPUT" [("TYPE","TEXT"),("NAME",name),("VALUE",
ont)℄where the string
ontents de�nes an initial
ontents of this �eld and the stringname is used to identify this �eld when the data of the �lled form is sent to theserver. This dire
t approa
h is taken in CGI libraries for s
ripting languages likePerl or also in the CGI library for Haskell [9℄. In this
ase, the program runningon the web server is an I/O a
tion that de
odes the input data (
ontained in en-vironment variables and the standard input stream) and puts the resulting HTMLdo
ument on the output stream. Therefore, CGI programs
an be implemented inany programming language supporting a

ess to the system environment. However,this basi
 view results in an awkward programming style when sequen
es of inter-a
tions (i.e., HTML forms) must be modeled where state should be passed betweendi�erent intera
tions. Therefore, we propose a higher abstra
tion level and we willshow that the fun
tional and logi
 features of the underlying language Curry
anbe exploited to provide an appropriate programming infrastru
ture.There are two basi
 ideas of our CGI programming model:1. The input �elds are not referen
ed by strings but by elements of a spe
i�
abstra
t data type. This has the advantage that the names of referen
es
orre-spond to names of program variables so that the
ompiler
an
he
k in
onsis-ten
ies in the naming of referen
es.2. The program that is a
tivated when a form is submitted is implemented to-gether with the program generating the form. This has the advantage thatsequen
es of intera
tions
an be simply implemented using the
ontrol abstra
-tions of the underlying language and state
an be easily passed between di�erentintera
tions of a sequen
e using the referen
es mentioned above.For dealing with referen
es to input �elds, we use logi
al variables sin
e it is wellknown that logi
al variables are a useful notion to express dependen
ies inside datastru
tures [5, 15℄. To be more pre
ise, we introdu
e a data typedata CgiRef = CgiRef Stringdenoting the type of all referen
es to input elements in HTML forms. This datatype is abstra
t, i.e., its
onstru
tor CgiRef is not exported by the CGI library.This is essential sin
e it avoids the
onstru
tion of wrong referen
es. The only wayto introdu
e su
h referen
es are logi
al variables, and the global wrapper fun
tionis responsible to instantiate these variables with appropriate referen
es (i.e., instan-tiate ea
h referen
e variable to a term of the form CgiRef n where n is a uniquename).To in
lude referen
es in HTML forms, we extend the de�nition of our data typefor HTML expressions by the following alternative:data HtmlExp = ... | HtmlCRef HtmlExp CgiRef

www.manaraa.com

A term \HtmlCref hexp
r" denotes an HTML element hexp with a referen
e toit. Usually, hexp is one of the input elements de�ned for HTML, like text �elds,text areas,
he
k boxes et
. For instan
e, a text �eld is de�ned by the followingabbreviation in our library:5textfield :: CgiRef -> String -> HtmlExptextfield eval flextextfield (CgiRef ref)
ontents =HtmlCRef (HtmlElem "INPUT" [("TYPE","TEXT"),("NAME",ref),("VALUE",
ontents)℄)(CgiRef ref)Note that ref is unbound when this fun
tion is applied but it will be bound to aunique name (string) by the wrapper fun
tion exe
uting the form (see below).A
omplete HTML form
onsists of a title and a list of HTML expressions tobe displayed by the
lient's browser, i.e., we represent HTML forms as expressionsof the following data type:data HtmlForm = Form String [HtmlExp℄Thus, we de�ne a form
ontaining a single input element (a text �eld) byForm "Form" [h1 [htxt "A Simple Form"℄,htxt "Enter a string:", textfield sref ""℄In order to submit a form to the web server, HTML supports \submit" buttons (weonly dis
uss this submission method here although there are others). The a
tionsto be taken are des
ribed by CGI programs that de
ode the submitted values of theform before they perform the appropriate a
tions. To simplify these a
tions and
ombine them with the program generating the form, we propose an event handlingmodel for CGI programming. For this purpose, ea
h submit button is asso
iatedwith an event handler responsible to perform the appropriate a
tions. An eventhandler is a fun
tion from a CGI environment into an I/O a
tion (in order toenable a

ess to the server environment) that returns a new form to be sent ba
kto the
lient. A CGI environment is simply a mapping from CGI referen
es intostrings. When an event handler is exe
uted, it is supplied with a CGI environment
ontaining the values entered by the
lient into the form. Thus, event handlers havethe typetype EventHandler = (CgiRef -> String) -> IO HtmlFormTo atta
h an event handler to an HTML element, we �nally extend the de�nitionof our data type for HTML expressions by:data HtmlExp = ... | HtmlEvent HtmlExp EventHandlerA term \HtmlEvent hexp handler" denotes an HTML element hexp (typi
ally asubmit button) with an asso
iated event handler. Thus, submit buttons are de�nedas follows:5 Note that this fun
tion must be
exible so that the �rst argument, whi
h
an only bea logi
al variable, is instantiated by the appli
ation of this fun
tion.

www.manaraa.com

Fig. 1. A simple string reverse/dupli
ation formbutton :: String -> EventHandler -> HtmlExpbutton txt handler =HtmlEvent (HtmlElem "INPUT" [("TYPE","SUBMIT"),("NAME","EVENT"),("VALUE",txt)℄)handlerThe argument label is the text shown on the button and the attribute NAME islater used to identify the sele
ted submit button (sin
e several buttons
an o

urin one form).To see a simple but
omplete example, we show the spe
i�
ation of a form wherethe user
an enter a string and
hoose between two a
tions (reverse or dupli
atethe string, see Figure 1):6revdup = return $ Form "Question"[htxt "Enter a string: ", textfield tref "",hrule,button "Reverse string" revhandler,button "Dupli
ate string" duphandler℄wheretref freerevhandler env = return $ Form "Answer"[h1 [htxt ("Reversed input: " ++ rev (env tref))℄℄duphandler env = return $ Form "Answer"[h1 [htxt ("Dupli
ated input: " ++ env tref ++ env tref)℄℄Note the simpli
ity of retrieving values entered into the form: sin
e the event han-dlers are
alled with the appropriate environment
ontaining these values, they
an easily a

ess these values by applying the environment to the appropriate CGIreferen
e, like (env tref). This simple stru
ture of CGI programming is madepossible by the fun
tional as well as logi
 programming features of the underlyinglanguage Curry.6 The prede�ned right-asso
iative in�x operator f $ e denotes the appli
ation of f to theargument e.

www.manaraa.com

Forms are exe
uted by a spe
ial wrapper fun
tion that performs the translationinto
on
rete HTML
ode, de
oding the entered values and invoking the right eventhandler. This wrapper fun
tion has the following type:run
gi :: String -> IO HtmlForm -> IO ()It takes a string (the URL under whi
h this CGI program is a

essible on theserver) and an I/O a
tion returning a form and returns an I/O a
tion whi
h, whenexe
uted, returns the HTML
ode of the form. Thus, the above form is exe
utedby the following main fun
tionmain = run
gi "revdup.
gi" revdupprovided that the exe
utable of this program is stored in revdup.
gi.5 Server Side Web S
riptingIn this following se
tion we will sket
h that the
omponents for CGI programmingintrodu
ed so far (i.e., logi
al variables for CGI referen
es, asso
iated event handlersdepending on CGI environments) are suÆ
ient to solve typi
al problems in CGIprogramming in an appropriate way, like handling sequen
es of intera
tions orholding intermediate states between intera
tions.From the previous example it might be un
lear why the event handlers as wellas the wrapper fun
tion assumes that the form is en
apsulated in an I/O a
tion.Although this is unne
essary for appli
ations where the web server is used as a\
omputation server" (where the result depends only on the form inputs), in manyappli
ations the
lients want to a

ess or manipulate data stored on the server. Inthese
ases, the web servi
e program must be able to a

ess the server environmentwhi
h is easily enabled by running it in the I/O monad.As a simple example for su
h kinds of appli
ations, we show the de�nition ofa (not re
ommendable) form to retrieve the
ontents of an arbitrary �le stored atthe server:getfile = return $ Form "Question"[htxt "Enter lo
al file name:", textfield fileref "",button "Get file!" handler℄wherefileref freehandler env = readFile (env fileref) >>= \
ontents ->return $ Form "Answer"[h1 [htxt ("Contents of " ++ env fileref)℄,verbatim
ontents℄Here it is essential that the event handler is exe
uted in the I/O monad, otherwiseit has no possibility to a

ess the
ontents of the lo
al �le via the I/O a
tionreadFile before
omputing the
ontents of the returned form. In a similar way,arbitrary data
an be retrieved or stored by the web server while exe
uting CGIprograms.

www.manaraa.com

In the previous examples the intera
tion between the
lient and the web serveris quite simple: the
lient sends a request by �lling a form whi
h is answered bythe server with an HTML do
ument
ontaining the requested information. In real-isti
 appli
ations it is often the
ase that the intera
tion is not �nished by sendingba
k the requested information but the
lient requests further (e.g., more detailed)information based on the re
eived results. Thus, one has to deal with sequen
es oflonger intera
tions between the
lient and the server. Our CGI programmingmodelprovides a dire
t support for intera
tion sequen
es. Sin
e the answer provided bythe event handler is an HTML form rather than an HTML expression, this answer
an also
ontain further input elements and asso
iated event handlers. By nestingevent handlers, it is straightforward to implement bounded sequen
es of intera
-tions. Furthermore, arbitrary iterations or bran
hes in intera
tions sequen
es
anbe implemented by the
orresponding
ontrol
onstru
ts of the underlying lan-guage, e.g., re
ursion or if-then-else. This also o�ers an elegant solution to thenasty problem of handling intermediate states between di�erent intera
tions (notethat HTTP is a stateless proto
ol). Sin
e Curry is a language with lexi
al s
oping,event handlers
an be nested and one
an dire
tly refer to input elements in pre-vious forms. Although there are many other proposals to over
ome the statelessnature of HTTP, it should be noted that our library is
ompletely implemented inCurry and does not require any extension to web servers but uses only the standardfeatures of CGI. Sin
e these are supported by most web servers, our library
an beused with most web servers (where a Curry system is also installed).6 Con
lusionsIn this paper we have presented a new model for programming web servi
es basedon the standard Common Gateway Interfa
e. Sin
e this model is put on top ofthe multi-paradigm language Curry, we
ould exploit fun
tional as well as logi
programming te
hniques to provide a high abstra
tion level for our programmingmodel. We have used fun
tional abstra
tions for spe
ifying HTML forms as ex-pressions of a spe
i�
 data type so that only well-formed HTML stru
tures
an bewritten. Furthermore, higher-order fun
tional abstra
tions are used to atta
h eventhandlers to parti
ular HTML elements like buttons and to provide a straightfor-ward a

ess to input values via an environment model. Sin
e event handlers
an benested, we have a dire
t support to de�ne sequen
es (or sessions) of intera
tionsbetween the
lient and the server where states or input values of previous forms areavailable in subsequent intera
tions. This over
omes the stateless nature of HTTP.On the other hand, the logi
al features of Curry are used to deal with referen
es toinput values in HTML forms. Sin
e a form
an have an arbitrary number of inputvalues, we
onsider them as \holes" in an HTML expression whi
h are �lled by theuser so that event handlers
an a

ess these values through an environment. Usinglogi
al variables to refer to input values seems more appropriate than the use ofstrings as in raw HTML sin
e some errors (e.g., mispelled names) are dete
ted at
ompile time.Sin
e the programming model proposed in this paper needs no spe
i�
 exten-sion to Curry, it provides appropriate support to implement web-based interfa
esto existing Curry appli
ations. Moreover, it
an be
onsidered as a domain-spe
i�

www.manaraa.com

language for writing CGI s
ripts. Thus, this demonstrates that a multi-paradigmde
larative language like Curry
an also be used as a s
ripting language for serverside web appli
ations. We have shown that the fun
tional as well as the logi
 fea-tures provides a good infrastru
ture to design su
h a domain-spe
i�
 language.The implementation of this library is freely available with our Curry developmentsystem PAKCS [6℄. All examples in this paper have been tested with this implemen-tation. Furthermore, the library is
urrently used to dynami
ally
reate parts ofthe web pages for Curry7 and to handle the submission information for the Journalof Fun
tional and Logi
 Programming8.Referen
es1. S. Antoy, R. E
hahed, and M. Hanus. A Needed Narrowing Strategy. To appearin Journal of the ACM, 2000. Previous version in Pro
. 21st ACM Symposium onPrin
iples of Programming Languages, pp. 268{279, 1994.2. D. Cabeza and M. Hermenegildo. Internet and WWW Programming using Compu-tational Logi
 Systems. In Workshop on Logi
 Programming and the Internet, 1996.See also http://www.
lip.dia.fi.upm.es/mis
do
s/pillow/pillow.html.3. M. Hanus. The Integration of Fun
tions into Logi
 Programming: From Theory toPra
ti
e. Journal of Logi
 Programming, Vol. 19&20, pp. 583{628, 1994.4. M. Hanus. A Uni�ed Computation Model for Fun
tional and Logi
 Programming. InPro
. of the 24th ACM Symposium on Prin
iples of Programming Languages (Paris),pp. 80{93, 1997.5. M. Hanus. A Fun
tional Logi
 Programming Approa
h to Graphi
al User Interfa
es.In International Workshop on Pra
ti
al Aspe
ts of De
larative Languages (PADL'00),pp. 47{62. Springer LNCS 1753, 2000.6. M. Hanus, S. Antoy, J. Koj, P. Niederau, R. Sadre, and F. Steiner.PACS: The Portland Aa
hen Kiel Curry System. Available athttp://www.informatik.uni-kiel.de/~pak
s/, 2000.7. M. Hanus (ed.). Curry: An Integrated Fun
tional Logi
 Language (Vers. 0.7.1). Avail-able at http://www.informatik.uni-kiel.de/~
urry, 2000.8. D.A. Ladd and J.C. Ramming. Programming the Web: An Appli
ation-OrientedLanguage for Hypermedia Servi
es. In 4th International World Wide Web Conferen
e,1995.9. E. Meijer. Server Side Web S
ripting in Haskell. Journal of Fun
tional Programming,Vol. 10, No. 1, pp. 1{18, 2000.10. J. Peterson et al. Haskell: A Non-stri
t, Purely Fun
tional Language (Version 1.4).Te
hni
al Report, Yale University, 1997.11. A. Sandholm and M.I. S
hwartzba
h. A Type System for Dynami
 Web Do
uments.In Pro
. of the 27th ACM Symposium on Prin
iples of Programming Languages, pp.290{301, 2000.12. V.A. Saraswat. Con
urrent Constraint Programming. MIT Press, 1993.13. P. Thiemann. Modelling HTML in Haskell. In International Workshop on Pra
ti
alAspe
ts of De
larative Languages (PADL'00), pp. 263{277. Springer LNCS 1753, 2000.14. P. Wadler. How to De
lare an Imperative. ACM Computing Surveys, Vol. 29, No. 3,pp. 240{263, 1997.15. D.H.D. Warren. Logi
 Programming and Compiler Writing. Software - Pra
ti
e andExperien
e, Vol. 10, pp. 97{125, 1980.7 http://www.informatik.uni-kiel.de/~
urry8 http://www-i2.informatik.rwth-aa
hen.de/~hanus/jflp.
gi

