Web Server Programming in Curry
Extended Abstract

Michael Hanus*

Institut fur Informatik, Christian-Albrechts-Universitat Kiel
Olshausenstr. 40, D-24098 Kiel, Germany, mh@informatik.uni-kiel.de

Abstract. In this paper we propose a new approach to implement web
services based on the Common Gateway Interface (CGI). Since we use the
multi-paradigm declarative language Curry as an implementation language,
many of the drawbacks and pitfalls of traditional CGI programming can be
avoided. For instance, the syntactical details of HTML and passing values
with CGI are hidden by a wrapper that executes abstract HTML forms
by translating them into concrete HTML code. This leads to a high-level
approach to server side web service programming where notions like event
handlers, state variables and control of interactions are available. Thanks
to the use of a functional logic language, we can structure our approach
as an embedded domain specific language where the functional and logic
programming features of the host language are exploited to abstract from
details and frequent errors in standard CGI programming.

1 Motivation

In the early days of the World Wide Web (in the following called the web), most
of the documents were static, i.e., stored in files which can be viewed in a nicely
formatted layout. With the introduction of the Common Gateway Interface (CGI),
more and more documents become dynamic, i.e., they are computed on the web
server at the time they are requested from a client. In combination with input
forms specified in HTML documents, more complex forms of interactions become
possible so that clients can retrieve or store specific data via their web browsers.

An advantage of CGI is that it is supported by most web servers. Thus, the use
of CGI does not need any special extensions on the server or the client side (e.g., no
servlets or cookies), which is a requirement for our development. On the other hand,
CGI offers only a very primitive form of interaction so that the programming of
web services often becomes awkward. Although general scripting languages like Perl
provide libraries for decoding input form data, they do not support the programmer
in the construction of correct output data or to control a sequence of interactions
with the client. This demands for specialized languages (e.g., MAWL [8], DynDoc
[11]) or specialized libraries in existing languages (e.g., [2,9,13]). In this paper we
take the latter approach. We show how the features of an integrated functional
logic language (see [3] for a survey on these kind of languages) can be exploited
to provide a flexible and high-level approach to programming web services without
any language extensions. In particular, our approach offers the following features
for implementing web services:

* This research has been partially supported by the German Research Council (DFG)
under grant Ha 2457/1-1 and by the DAAD under the PROCOPE programme.

www.manaraa.com

— The HTML documents requested by the clients can be flexibly generated de-
pending on the computed data (in contrast to MAWL [8] which uses fixed
templates with a simple list iteration construct).

— The data filled in a form by the user can be easily retrieved by an environment
model using logical variables as references.

— The different actions to be taken when a user has completed a form are specified
by an event handler model.

— The sequence (or iterations) of interactions with the web server is described in
one script and not distributed over a set of script files. In particular, a form
is described together with the handler for this form which avoids typical CGI
programming errors (e.g., undefined input fields).

— State variables which should persist between different interactions are directly
supported.

— The CGI interaction (usually, by environment variables and value decoding) is
hidden to the user and encapsulated in a wrapper that translates the high-level
scripts into HTML code.

Our library is completely implemented in Curry [4, 7], a modern multi-paradigm
declarative language which integrates functional, logic, and concurrent program-
ming paradigms. Thus, we show that Curry is an appropriate language for writing
web service scripts. On the other hand, Curry is a complete programming lan-
guage offering static typing, higher-order functions, constraints, and features for
concurrent and distributed programming, which are useful for building complex
web applications.

This paper is structured as follows. The next section provides a short overview
of the main features of Curry as relevant for this paper. Sections 3 and 4 introduce
our approach for modeling basic HT ML documents and interactive forms. Section 5
discusses the use of our CGI programming model by various examples before we
conclude in Section 6.

2 Basic Elements of Curry

Since we assume familiarity with the basic structure of HTML and CGI program-
ming, we review in this section only the basic elements of Curry as necessary to
understand the ideas presented in this paper. More details about Curry’s compu-
tation model and a complete description of all language features can be found in
[4,7].

Curry combines in a seamless way features from functional programming (nested
expressions, lazy evaluation, higher-order functions), logic programming (logical
variables, partial data structures, built-in search), and concurrent programming
(concurrent evaluation of expressions with synchronization on logical variables).
Curry also provides additional features in comparison to the pure paradigms
(compared to functional programming: search, computing with partial informa-
tion and constraints; compared to logic programming: more efficient evaluation
due to the deterministic and demand-driven evaluation of functions, more flexi-
ble search strategies) and supports programming-in-the-large with specific features
(types, modules, encapsulated search). From a syntactic point of view, a Curry

www.manaraa.com

program is a functional program’ extended by the possible inclusion of free (log-
ical) variables in conditions and right-hand sides of defining rules. Thus, a Curry
program consists of the definition of functions and the data types on which the
functions operate. Functions are evaluated in a lazy manner. To provide the full
power of logic programming, functions can be called with partially instantiated
arguments and defined by conditional equations with constraints in the conditions.
The behavior of function calls with free variables depends on the evaluation anno-
tations of functions which can be either flexible or rigid. Calls to rigid functions
are suspended if a demanded argument, i.e., an argument whose value is neces-
sary to decide the applicability of a rule, is uninstantiated (“residuation”™). Calls to
flexible functions are evaluated by a possibly non-deterministic instantiation of the
demanded arguments to the required values in order to apply a rule (“narrowing”).

Ezample 1. The following Curry program defines the data types of Boolean val-
ues, polymorphic lists and trees (first three lines) and functions for computing the
concatenation of lists and the last element of a list:

data Bool = True | False
data List a = [] | a : List a
data Tree a = Leaf a | Node a (List (Tree a))

conc :: [al -> [a] -> [a]
conc eval flex

conc [] ys = ys
conc (x:X8) ys = X : CONC XS yS

last xs | conc ys [x] =:= xs = x where x,ys free

The data type declarations define True and False as the Boolean constants, []
(empty list) and : (non-empty list) as the constructors for polymorphic lists (a is a
type variable ranging over all types and the type List a is usually written as [al]
for conformity with Haskell), and Leaf and Node as the constructors for trees.

“::7) of the function conc specifies that conc

The (optional) type declaration (
takes two lists as input and produces an output list., where all list elements are
of the same (unspecified) type.? Since conc is explicitly defined as flexible? (hy
“eval flex”), the equation “conc ys [x] =:= xs” can be solved by instantiating
the first argument ys to the list xs without the last argument, i.e., the only solution

to this equation satisfies that x is the last element of xs.

In general, functions are defined by (conditional) rules of the form
“l | ¢ =€ where vs free” where [has the form f ¢ ...t, with f being a function,
t1,...,t, data terms and each variable occurs only once, the condition ¢ is a con-

straint, e is a well-formed ezpression which may also contain function calls, lambda

! Curry has a Haskell-like syntax [10], i.e., (type) variables and function names usually
start with lowercase letters and the names of type and data constructors start with an
uppercase letter. The application of f to e is denoted by juxtaposition (“f €”).

2 Curry uses curried function types where a=>4 denotes the type of all functions mapping
elements of type a into elements of type 5.

3 As a default, all functions except for constraints are rigid.

www.manaraa.com

abstractions etc, and vs is the list of free variables that occur in ¢ and e but not in
! (the condition and the where parts can be omitted if ¢ and vs are empty, respec-
tively). The where part can also contain further local function definitions which
are only visible in this rule. A conditional rule can be applied if its left-hand side
matches the current call and its condition is satisfiable. A constraint is any expres-
sion of the built-in type Success*. Each Curry system provides at least equational
constraints of the form e; =:=e9 which are satisfiable if both sides e; and es are
reducible to unifiable data terms (i.e., terms without defined function symbols).
However, specific Curry systems can also support more powerful constraint struc-
tures, like arithmetic constraints on real numbers or finite domain constraints for
applications in operation research problems, as in the PAKCS implementation [6].

The operational semantics of Curry, as precisely described in [4,7], is a con-
servative extension of lazy functional programming (if no free variables occur in
the program or the initial goal) and (concurrent) logic programming. Due to the
use of an optimal evaluation strategy [1], Curry can be considered as a generaliza-
tion of concurrent constraint programming [12] with a lazy (optimal) evaluation
strategy. Due to this generalization, Curry supports a clear separation between the
sequential (functional) parts of a program, which are evaluated with an efficient
and optimal evaluation strategy, and the concurrent parts, based on the concurrent
evaluation of constraints, to coordinate concurrent program units.

Monadic I/0: Since web service programs usually interact with their environment
(e.g., retrieve or store information in files on the server), some knowledge ahout
performing I/O in a declarative manner is required. The 1/O concept of Curry is
identical to the monadic /O concept of Haskell [14], i.e., an interactive program
is considered to compute a sequence of actions which are applied to the outside
world. Actions have type “I0 o” which means that they return a result of type
a whenever they are applied to (and change) the outside world. For instance,
getChar of type I0 Char is an action which reads a character from the standard
input whenever it is executed, i.e., applied to a world. Similarly, “readFile f” is
an action which returns the contents of file £ in the current world. Actions can
only be sequentially composed. For instance, the action getChar can be composed
with the action putChar (which has type Char -> I0 () and writes a charac-
ter to the terminal) by the sequential composition operator >>= (which has type
I0 o -> (o => 10 B) -> I0 f), ie., “getChar >>= putChar” is a composed
action which prints the next character of the input stream on the screen. Further-
more, “return ¢” is the “empty” action which simply returns e (see [14] for more
details).

3 Modeling Basic HTML

In order to avoid certain syntactical errors (e.g., unbalanced parenthesis) during
the generation of HTML documents by a web server, the programmer should not
be forced to generate the explicit text of HTML documents (as in CGI scripts
written in Perl or with the Unix shell). A better approach is the introduction of an
abstraction layer where HTML documents are modeled as terms of a specific data

4
Success was called Constraint in previous versions of Curry

www.manaraa.com

type together with a wrapper function which is responsible for the correct textual
representation of this data type. Such an approach can be easily implemented in
a language supporting algebraic data types. Similarly to the data type of trees in
Example 1, we introduce the type of HTML expressions in Curry as follows:

data HtmlExp = HtmlText String
| HtmlStruct String [(String,String)] [HtmlExp]
|

HtmlElem String [(String,String)]

Thus, an HTML expression is either a plain string or a structure consisting of
a tag (e.g., B.EMH1,H2....), a list of attributes, and a list of HTML expressions
contained in this structure. The translation of such HTML expressions into their
corresponding textual representation is straightforward: an Htm1lText is represented
by its argument, and a structure with tag ¢ is enclosed in the brackets <t> and </¢>
(where the attributes are eventually added to the open bracket). Since there are a
few HTML elements without a closing tag (like <HR> or
), we have included
the alternative HtmElem to represent these elements.

Since writing HTML documents in this form might be tedious, we define several
functions as useful abbreviations (the function htmlQuote transforms characters

with a special meaning in HTML, like <, >, &, ", into their HTML quoted form):

htxt s = HtmlText (htmlQuote s) -- plain string
hi hexps = HtmlStruct "H1" [] hexps -- main header
bold hexps = HtmlStruct "B" [] hexps -- bold font
italic hexps = HtmlStruct "I" [] hexps -- italic font
hrule = HtmlElem "HR" [] -- horizontal rule

As a simple example, the following expression defines a “Hello World” document
consisting of a header and two words in italic and bold font, respectively:

[h1 [htxt "Hello World"],
italic [htxt "Hello"], bold [htxt "world!'"]]

Note that we do not check the validity of the attributes for each structure. This can
be done by defining HTML expressions with a reacher type structure, as shown in
[13]. The wrapper function to convert these HTML expressions into valid HTML
documents will be shown in the next section where we discuss the modeling of
input forms.

4 Input Forms

In order to enable more sophisticated interactions between clients using standard
browsers and a web server, HTML defines so-called FORM elements which usually
contains several input elements to be filled out by the client. When the client
submits such a form, the data contained in the input elements is encoded and
sent (on the standard input or with the URL) to the server which starts a CGI
program to react to the submission. The activated program decodes the input data

www.manaraa.com

and performs some application-dependent processing before it returns an HTML
document on the standard output which is then sent back to the client.

In principle, the type HtmlExp is sufficient to model all kinds of HTML docu-
ments including input elements like text fields, check buttons etc. For instance, an
input field to be filled out with a text string can be modeled as

HtmlElem "INPUT" [("TYPE","TEXT"), ("NAME",name), ("VALUE",cont)]

where the string contents defines an initial contents of this field and the string
name is used to identify this field when the data of the filled form is sent to the
server. This direct approach is taken in CGI libraries for scripting languages like
Perl or also in the CGI library for Haskell [9]. In this case, the program running
on the web server is an I/O action that decodes the input data (contained in en-
vironment variables and the standard input stream) and puts the resulting HTML
document on the output stream. Therefore, CGI programs can be implemented in
any programiming language supporting access to the system environment. However,
this basic view results in an awkward programming style when sequences of inter-
actions (i.e., HTML forms) must be modeled where state should be passed between
different interactions. Therefore, we propose a higher abstraction level and we will
show that the functional and logic features of the underlying language Curry can
be exploited to provide an appropriate programming infrastructure.
There are two basic ideas of our CGI programming model:

1. The input fields are not referenced by strings but by elements of a specific
abstract data type. This has the advantage that the names of references corre-
spond to names of program variables so that the compiler can check inconsis-
tencies in the naming of references.

2. The program that is activated when a form is submitted is implemented to-
gether with the program generating the form. This has the advantage that
sequences of interactions can be simply implemented using the control abstrac-
tions of the underlying language and state can be easily passed between different
interactions of a sequence using the references mentioned above.

For dealing with references to input fields, we use logical variables since it is well
known that logical variables are a useful notion to express dependencies inside data
structures [5, 15]. To be more precise, we introduce a data type

data CgiRef = CgiRef String

denoting the type of all references to input elements in HTML forms. This data
type is abstract, i.e., its constructor CgiRef is not exported by the CGI library.
This is essential since it avoids the construction of wrong references. The only way
to introduce such references are logical variables, and the global wrapper function
is responsible to instantiate these variables with appropriate references (i.e., instan-
tiate each reference variable to a term of the form CgiRef n where n is a unique
name).

To include references in HTML forms, we extend the definition of our data type
for HTML expressions by the following alternative:

data HtmlExp = ... | HtmlCRef HtmlExp CgiRef

www.manaraa.com

A term “HtmlCref hexp cr” denotes an HTML element hexp with a reference to
it. Usually, hexp is one of the input elements defined for HTML, like text fields,
text areas, check boxes etc. For instance, a text field is defined by the following
abbreviation in our library:?

textfield :: CgiRef -> String -> HtmlExp
textfield eval flex
textfield (CgiRef ref) contents =
HtmlCRef (HtmlElem "INPUT" [("TYPE","TEXT"), ("NAME",ref),
("VALUE",contents)])
(CgiRef ref)

Note that ref is unbound when this function is applied but it will be bound to a
unique name (string) by the wrapper function executing the form (see below).

A complete HTML form consists of a title and a list of HTML expressions to
be displayed by the client’s browser, i.e., we represent HTML forms as expressions
of the following data type:

data HtmlForm = Form String [HtmlExp]
Thus, we define a form containing a single input element (a text field) by

Form "Form" [hl [htxt "A Simple Form"],
htxt "Enter a string:", textfield sref |

In order to submit a form to the web server, HTML supports “submit” buttons (we
only discuss this submission method here although there are others). The actions
to be taken are described by CGI programs that decode the submitted values of the
form before they perform the appropriate actions. To simplify these actions and
combine them with the program generating the form, we propose an event handling
model for CGI programming. For this purpose, each submit button is associated
with an event handler responsible to perform the appropriate actions. An event
handler is a function from a CGI environment into an I/0O action (in order to
enable access to the server environment) that returns a new form to be sent back
to the client. A CGI environment is simply a mapping from CGI references into
strings. When an event handler is executed, it is supplied with a CGI environment
containing the values entered by the client into the form. Thus, event handlers have
the type

type EventHandler = (CgiRef -> String) -> I0 HtmlForm

To attach an event handler to an HTML element, we finally extend the definition
of our data type for HTML expressions by:

data HtmlExp = ... | HtmlEvent HtmlExp EventHandler

A term “HtmlEvent hexp handler” denotes an HTML element hexp (typically a
submit button) with an associated event handler. Thus, submit buttons are defined
as follows:

® Note that this function must be flexible so that the first argument, which can only be
a logical variable, is instantiated by the application of this function.

www.manaraa.com

[®] Metscape: Question

File Edit Wiew Go Communicator Help

Enter a string; II

‘ Eeverse stﬂ'.ngl ‘ Duplicate stﬂ'.ngl

= | % %0 9@ @ 2|

Fig. 1. A simple string reverse/duplication form

button :: String -> EventHandler -> HtmlExp
button txt handler =
HtmlEvent (HtmlElem "INPUT" [("TYPE","SUBMIT"),
("NAME" ,"EVENT"), ("VALUE",txt)])
handler

The argument label is the text shown on the button and the attribute NAME is
later used to identify the selected submit button (since several buttons can occur
in one form).

To see a simple but complete example, we show the specification of a form where
the user can enter a string and choose between two actions (reverse or duplicate
the string, see Figure 1):5

revdup = return $ Form "Question"

[htxt "Enter a string: ", textfield tref "",
hrule,
button "Reverse string" revhandler,

button "Duplicate string" duphandler]
where
tref free

revhandler env = return $ Form '"Answer"
[h1 [htxt ("Reversed input: " ++ rev (env tref))]]

duphandler env = return $ Form '"Answer"
[h1 [htxt ("Duplicated input: " ++ env tref ++ env tref)]]

Note the simplicity of retrieving values entered into the form: since the event han-
dlers are called with the appropriate environment containing these values, they
can easily access these values by applying the environment to the appropriate CGI
reference, like (env tref). This simple structure of CGI programming is made
possible by the functional as well as logic programming features of the underlying
language Curry.

% The predefined right-associative infix operator f $ e denotes the application of f to the
argument e.

www.manaraa.com

Forms are executed by a special wrapper function that performs the translation
into concrete HTML code, decoding the entered values and invoking the right event
handler. This wrapper function has the following type:

runcgi :: String -> I0 HtmlForm -> IO ()

It takes a string (the URL under which this CGI program is accessible on the
server) and an I/O action returning a form and returns an I/O action which, when
executed, returns the HTML code of the form. Thus, the above form is executed

by the following main function
main = runcgi ‘'revdup.cgi" revdup

provided that the executable of this program is stored in revdup.cgi.

5 Server Side Web Scripting

In this following section we will sketch that the components for CGI programming
introduced so far (i.e., logical variables for CGI references, associated event handlers
depending on CGI environments) are sufficient to solve typical problems in CGI
programiming in an appropriate way, like handling sequences of interactions or
holding intermediate states between interactions.

From the previous example it might be unclear why the event handlers as well
as the wrapper function assumes that the form is encapsulated in an I/O action.
Although this is unnecessary for applications where the web server is used as a
“computation server” (where the result depends only on the form inputs), in many
applications the clients want to access or manipulate data stored on the server. In
these cases, the web service program must be able to access the server environment
which is easily enabled by running it in the I/O monad.

As a simple example for such kinds of applications, we show the definition of
a (not recommendable) form to retrieve the contents of an arbitrary file stored at
the server:

getfile = return $ Form "Question"
[htxt "Enter local file name:', textfield fileref "',
button "Get file!' handler]

where
fileref free

handler env = readFile (env fileref) >>= \contents ->
return $ Form "Answer"
[h1 [htxt ("Contents of " ++ env fileref)],
verbatim contents]

Here it is essential that the event handler is executed in the I/O monad, otherwise
it has no possibility to access the contents of the local file via the 1/O action
readFile before computing the contents of the returned form. In a similar way,
arbitrary data can be retrieved or stored by the web server while executing CGI
programs.

www.manaraa.com

In the previous examples the interaction hetween the client and the web server
is quite simple: the client sends a request by filling a form which is answered by
the server with an HTML document containing the requested information. In real-
istic applications it is often the case that the interaction is not finished by sending
back the requested information but the client requests further (e.g., more detailed)
information based on the received results. Thus, one has to deal with sequences of
longer interactions between the client and the server. Our CGI programming model
provides a direct support for interaction sequences. Since the answer provided by
the event handler is an HTML form rather than an HTML expression, this answer
can also contain further input elements and associated event handlers. By nesting
event handlers, it is straightforward to implement bounded sequences of interac-
tions. Furthermore, arbitrary iterations or branches in interactions sequences can
be implemented by the corresponding control constructs of the underlying lan-
guage, e.g., recursion or if-then-else. This also offers an elegant solution to the
nasty problem of handling intermediate states between different interactions (note
that HTTP is a stateless protocol). Since Curry is a language with lexical scoping,
event handlers can be nested and one can directly refer to input elements in pre-
vious forms. Although there are many other proposals to overcome the stateless
nature of HTTP, it should be noted that our library is completely implemented in
Curry and does not require any extension to web servers but uses only the standard
features of CGI. Since these are supported by most web servers, our library can be
used with most web servers (where a Curry system is also installed).

6 Conclusions

In this paper we have presented a new model for programming web services based
on the standard Common Gateway Interface. Since this model is put on top of
the multi-paradigm language Curry, we could exploit functional as well as logic
programming techniques to provide a high abstraction level for our programming
model. We have used functional abstractions for specifying HTML forms as ex-
pressions of a specific data type so that only well-formed HTML structures can be
written. Furthermore, higher-order functional abstractions are used to attach event
handlers to particular HTML elements like buttons and to provide a straightfor-
ward access to input values via an environment model. Since event handlers can be
nested, we have a direct support to define sequences (or sessions) of interactions
between the client and the server where states or input values of previous forms are
available in subsequent interactions. This overcomes the stateless nature of HTTP.
On the other hand, the logical features of Curry are used to deal with references to
input values in HTML forms. Since a form can have an arbitrary number of input
values, we consider them as “holes” in an HTML expression which are filled by the
user so that event handlers can access these values through an environment. Using
logical variables to refer to input values seems more appropriate than the use of
strings as in raw HTML since some errors (e.g., mispelled names) are detected af
compile time.

Since the programming model proposed in this paper needs no specific exten-
sion to Curry, it provides appropriate support to implement web-based interfaces
to existing Curry applications. Moreover, it can be considered as a domain-specific

www.manaraa.com

language for writing CGI scripts. Thus, this demonstrates that a multi-paradigm
declarative language like Curry can also be used as a scripting language for server
side web applications. We have shown that the functional as well as the logic fea-
tures provides a good infrastructure to design such a domain-specific language.
The implementation of this library is freely available with our Curry development
system PAKCS [6]. All examples in this paper have been tested with this implemen-
tation. Furthermore, the library is currently used to dynamically create parts of
the web pages for Curry” and to handle the submission information for the Journal
of Functional and Logic Programming®.

References

1. S. Antoy, R. Echahed, and M. Hanus. A Needed Narrowing Strategy. 7To appear
in Journal of the ACM, 2000. Previous version in Proc. 21st ACM Symposium on
Principles of Programming Languages, pp. 268-279, 1994.

2. D. Cabeza and M. Hermenegildo. Internet and WWW Programming using Compu-
tational Logic Systems. In Workshop on Logic Programming and the Internet, 1996.
See also http://www.clip.dia.fi.upm.es/miscdocs/pillow/pillow.html.

3. M. Hanus. The Integration of Functions into Logic Programming: From Theory to
Practice. Journal of Logic Programming, Vol. 19&20, pp. 583-628, 1994.

4. M. Hanus. A Unified Computation Model for Functional and Logic Programming. In
Proc. of the 24th ACM Symposium on Principles of Programming Languages (Paris),
pp. 80-93, 1997.

5. M. Hanus. A Functional Logic Programming Approach to Graphical User Interfaces.
In International Workshop on Practical Aspects of Declarative Languages (PADL’00),
pp- 47-62. Springer LNCS 1753, 2000.

6. M. Hanus, S. Antoy, J. Koj, P. Niederau, R. Sadre, and F. Steiner.

PACS: The Portland Aachen Kiel Curry System. Available at

http://wuw.informatik.uni-kiel.de/"pakcs/, 2000.

M. Hanus (ed.). Curry: An Integrated Functional Logic Language (Vers. 0.7.1). Avail-

able at http://www.informatik.uni-kiel.de/"curry, 2000

8. D.A. Ladd and J.C. Ramming. Programming the Web: An Application-Oriented
Tanguage for Hypermedia Services. In 4th International World Wide Web Conference,

1995.
9. E. Meijer. Server Side Web Scripting in Haskell. Journal of Functional Programming,
Vol. 10, No. 1, pp. 1 18, 2000.

10. J. Peterson et al. Haskell: A Non-strict, Purely Functional Language (Version 1.4).
Technical Report, Yale University, 1997.

11. A. Sandholm and M.l. Schwartzbach. A Type System for Dynamic Web Documents.
In Proc. of the 27th ACM Symposium on Principles of Programming Languages, pp.
290-301, 2000.

12. V.A. Saraswat. Concurrent Constraint Programming. MIT Press; 1993.

13. P. Thiemann. Modelling HTMI. in Haskell. In International Workshop on Practical
Aspects of Declarative Languages (PADL’00), pp. 263 277. Springer LNCS 1753, 2000.

14. P. Wadler. How to Declare an Imperative. ACM Computing Surveys, Vol. 29, No. 3,
pp- 240 263, 1997.

15. D.H.D. Warren. Logic Programming and Compiler Writing. Software - Practice and
FEzperience, Vol. 10, pp. 97-125, 1980.

=~!

7 http://wuw.informatik.uni-kiel.de/ curry
8 http://wwuw-i2.informatik.rwth-aachen.de/“hanus/jflp.cgi

www.manaraa.com

